SFK(H)03

Immersion temperature sensor

Datasheet

Subject to technical alteration Issue date: 28.06.2022 • A120

» APPLICATION

Immersion sensor in enclosure form B integrated thermowell pocket for high temperature measurement of liquids in duct applications. Types SFKH03 with a 70 mm neck pipe are designed for applications with insulation materials.

»TYPES AVAILABLE

Immersion sensor temperature - passive

• SFK(H)03 <sensor> <xxx>.08

Immersion sensor temperature - active TRV 0..10 V | TRA 4..20 mA

- SFK(H)03 TRVx <xxx>.08
- SFK(H)03 TRAx <xxx> 08

<Sensor>: PT100/PT1000/NI1000/NI1000TK5000/LM235Z/NTC.../PTC...other sensors on request

<xxx>: mounting length 50/100/150/200/250/450 mm

TRVx | TRAx: Product types with different measuring ranges available

» SECURITY ADVICE - CAUTION

The installation and assembly of electrical equipment should only be performed by authorized personnel.

The product should only be used for the intended application. Unauthorised modifications are prohibited! The product must not be used in relation with any equipment that in case of a failure may threaten, directly or indirectly, human health or life or result in danger to human beings, animals or assets. Ensure all power is disconnected before installing. Do not connect to live/operating equipment.

Please comply with

- Local laws, health & safety regulations, technical standards and regulations
- Condition of the device at the time of installation, to ensure safe installation
- This data sheet and installation manual

» PRODUCT TESTING AND CERTIFICATION

Declaration of conformity

The declaration of conformity of the products are available on our website https://www.thermokon.de/.

Page 2 / 4 Issue date: 28.06.2022

» NOTES ON DISPOSAL

As a component of a large-scale fixed installation, Thermokon products are intended to be used permanently as part of a building or a structure at a pre-defined and dedicated location, hence the Waste Electrical and Electronic Act (WEEE) is not applicable. However, most of the products may contain valuable materials that should be recycled and not disposed of as domestic waste. Please note the relevant regulations for local disposal.

» GENERAL REMARKS CONCERNING SENSORS

Especially with regard to passive sensors in 2-wire conductor versions, the wire resistance of the supply wire has to be considered. If necessary the wire resistance has to be compensated by the follow-up electronics. Due to self-heating, the wire current affects the measurement accuracy, so it should not exceed 1 mA.

When using lengthy connection wires (depending on the cross section used) the measuring result might be falsified due to a voltage drop at the common GND-wire (caused by the voltage current and the line resistance). In this case, 2 GND-wires must be wired to the sensor - one for supply voltage and one for the measuring current.

Sensing devices with a transducer should always be operated in the middle of the measuring range to avoid deviations at the measuring end points. The ambient temperature of the transducer electronics should be kept constant. The transducers must be operated at a constant supply voltage (±0,2 V). When switching the supply voltage on/off, onsite power surges must be avoided.

» BUILD-UP OF SELF-HEATING BY ELECTRICAL DISSIPATIVE POWER

Sensors with electronic components always have a dissipative power, which affects the temperature measurement of the ambient air. The dissipation in active temperature sensors shows a linear increase with rising operating voltage. This dissipative power has to be considered when measuring temperature. In case of a fixed operating voltage (±0,2 V) this is normally done by adding or reducing a constant offset value.

Thermokon transducers can be operated with variable operating voltages. The transducers are set at the factory with a reference operating voltage of 24 V =.

At this voltage, the expected measuring error of the output signal will be the least. Other operating voltages, can cause a measurement deviation changing power loss of the sensor electronics.

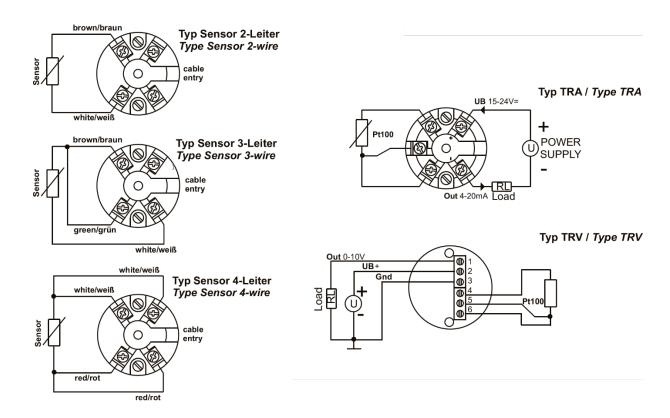
A recalibration can be carried out directly on the unit or via a software variable (app or bus).

Remark: Occurring draught leads to a better carrying-off of dissipative power at the sensor. Thus temporally limited fluctuations might occur upon temperature measurement.

» TECHNICAL DATA

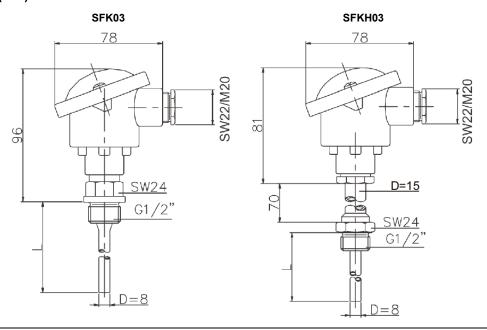
» IECHNICAL DATA				
Measuring values	temperature			
Medium	gases, fluids			
Output voltage (type-dependent)	TRV 1x 010 V, min. load 5 k Ω			
Output ampere (type-dependent)	TRA 1x 420 mA, max. load 500 Ω			
Output passive (type-dependent)	passive PT100 PT100 1/3 DIN PT1000 PT1000 1/3 DIN Ni1000 Ni1000TK5000, NTC10k NTC 10k Precon NTC20k NTC1,8k, LM235Z			
Power supply (type-dependent)	TRV 1535 V = or 1526 V ~ SELV		TRA 1524 V = (±10%) SELV	
Power consumption (type-dependent)	TRV typ. 1 W (24 V =) 1,4 VA (24 V ~)		TRA typ. 0,5 W (24 V =)	
Measuring range temp. (type-dependent)	passive PT / Ni: -50+160 °C (T160), optional -80+260 °C (T260), NTC: -50+150 °C (T150), LM235Z: -50+120 °C (T120)			
Output signal range temp. *Scaling analogue output (type-dependent)	TRV TRA TRV1 TRA1: -50+50 °C, TRV2 TRA2: -10+120 °C, TRV3 TRA3: 0+50 °C, TRV4 TRA4: 0+160 °C, TRV5 TRA5: 0+300 °C			
Operating temperature range *Max. permissible operating temp	sensor pocket -50+160 °C optional -80+260 °C	enclosure - T -35+70 °C	RV TRA	enclosure - passive -35+90 °C
Accuracy temperature (type-dependent)	TRV TRA ±0,2 K or ±0,1 % (whatever is greater, typ. at 21 °C)		passive depending on used sensor Sensor, PT100 PT1000: ±0,3 K (typ. bei 0 °C, KI.B) , Ni1000: ±0,4 K (typ. bei 0 °C), Ni1000TK5000: ±0,4 K (typ. bei 0 °C), NTC10K: ±0,22 K (typ. bei 25 °C)	
Sensor (type-dependent)	passive 2-wire (standard), 3-wire or 4-wire			

Issue date: 28.06.2022 Page 3 / 4


Enclosure	shape B, aluminium
Protection	IP66 according to EN 60529, SI-Protection
Cable entry	M20, for wire Ø=8 mm
Connection electrical	terminal block, max. 1,5 mm²
Neck pipe (optional)	stainless steel V2A, Ø=15 mm, L=70 mm
Pocket	stainless steel V4A, \varnothing =8 mm, mounting length: 100 150 200 250 mm, thread G 1/2" max. operating pressure 40 bar (580,15 psi)
Ambient condition	max. 85% rH short term condensation

» MOUNTING ADVICES

For risk of condensate permeation in the sensor tube respectively in the immersion pocket the bushing must be installed in a position that occurred condensate can run off.


» CONNECTION PLAN

Attention: With digital sensors such as AD592, SMT160, LM235, DS1820 the following applies: brown= plus (+), white= minus (-), green=out

Page 4 / 4 Issue date: 28.06.2022

» DIMENSIONS (MM)

» ACCESSORIES (OPTIONAL)

Bonded pocket type ESH60 for mounting length 50 mm Bonded pocket type ESH110 for mounting length 100 mm Bonded pocket type ESH160/170 for mounting length 150 mm Bonded pocket type ESH210 for mounting length 200 mm Bonded pocket type ESH260 for mounting length 250 mm Item No. 319096 Item No. 103459 Item No. 103466 Item No. 103473 Item No. 173247